Powder Versus Ceramic Coatings: Which Is Better?

Powder Versus Ceramic Coatings: Which Is Better?

When it comes to coatings, many different terms sound similar, but they're usually very different. When it comes to powder coatings versus high temp ceramic coatings, the two are indeed different. 

The Basics You Need to Know About Refractory Coatings

The Basics You Need to Know About Refractory Coatings

Refractory materials are substances or minerals that have high melting points, and they are difficult to fuse except at very high temperatures. They are processed at high temperatures and are intended for high temp applications. According to the Committee C-8 if the American Society for Testing and Materials (ASTM) refractoriness has been defined as, "the capability of maintaining the desired degree of chemical and physical identity at high temperatures and in the environment and conditions of use."

The Ceramic Coating Process: Different Ways to Coat Metal Parts

The Ceramic Coating Process: Different Ways to Coat Metal Parts

There are several types of ceramic coatings that can be applied to metal parts in order to enhance their properties. These ceramic coatings include ITC ceramic coatings, high temp ceramic coatings, ITC 100 refractory, ceramic insulation coatings, and more. Most ceramic coatings are great insulators, and they provide high levels of abrasion resistance for metals. They are also capable of maintaining their integrity under severely elevated temperatures, sometimes up to 4,500 degrees Fahrenheit. 

How Exactly Are ITC Ceramic Insulation Coatings Good for the Environment?

How Exactly Are ITC Ceramic Insulation Coatings Good for the Environment?

ITC ceramic coatings are high-temperature ceramic coatings that can be used for kilns, furnaces, forges, ovens, and metal equipment. ITC 100 ceramic coatings are high-reflective coatings, and they increase the efficiency of firing equipment. They also protect refractory and metal surfaces from heat, wear, and corrosion. 

How to Apply ITC 100 HT Ceramic Coating

How to Apply ITC 100 HT Ceramic Coating

When it comes to ITC ceramic coatings, there are five different types. They include ITC 148, ITC 100 HT ceramic coating, ITC 213 ceramic coating for metals, ITC 296A ceramic top coating, and ITC 200 EZ ceramic repair.

ITC 100 HT Ceramic Coating is a versatile high temperature ceramic coating that is proven to achieve outstanding energy savings and refractory protection. It can be used by itself or as a base coat for other ITC products. It's typically used as a covering for ceramic fiber insulation or castable refractory.

Important Applications for ITC 100 High Temp Ceramic Coatings

Important Applications for ITC 100 High Temp Ceramic Coatings

High temperature ceramic coatings sometimes referred to as exhaust coatings or high heat coatings because of their many applications. High temp coatings are designed to prevent corrosion of many industrial components, like kilns, exhaust systems, and engine components.

How Can I Extend the Life of My Kiln? Try These 3 Tricks

How Can I Extend the Life of My Kiln? Try These 3 Tricks

You can use your kiln for a variety of projects, including fun mugs you make as a hobby all the way up to important industrial fixtures you produce for a living. Whether you use your kiln for fun or for funds, there are things you can do to make it last longer and give you the most use possible. 


Use high temperature ceramic coatings

High temperature ceramic coatings can do wonders to help your kiln last longer. High temp ceramic coatings like ITC 100 HT Ceramic Coating save energy, reduce maintenance, improve temperature uniformity, increase peak temperature, and reduce corrosion. Because high temp coatings last a long time, they will add years onto the life of your kiln by providing this extra protection.


Always clean the elements

When you first purchase your kiln, dust and other debris can build up on the elements of the kiln during shipping. Dust can also build up from regular use of the kiln. If the elements have dust caked on them, it interferes with the oxidation, causing the elements to fire hotter than they normally would. To prevent this, vacuum the element grooves on a regular basis to remove the dust. You will also want to make sure there is no glaze or bits of clay melted into the grooves.


Keep up good ventilation

Your kiln will produce fumes when it's running, and those fumes can attack the elements of the kiln. The fumes can also cause cracks in the coating. Installing downdrafts can help protect your kiln against this problem. The downdrafts pull the fumes from the kiln chamber before they have a chance to damage the kiln's elements. If you don't use downdrafts for ventilation, you can prop the lid a few inches until the kiln reaches 1,000 degrees Fahrenheit to allow the fumes to flow out of the chamber. 

On average, the elements in a kiln will last up to 100 firings. To help the elements on the overall kiln last longer, use high temperature ceramic coatings, keep the elements clean, and practice good ventilation. Check out our inventory today to get yourself some high temp coatings that will protect your kiln.

6 Key Industrial Applications for High Temp Ceramic Coatings


High temp ceramic coatings have the ability to resist very high temperatures, as well as wear and tear and chemical corrosion. This means the item you coat with these ITC high temp coatings will be much more durable than without the coatings. High temperature ceramic coatings are frequently used in industrial applications for the following reasons: 

  • Thermal shock: If the ceramic coating is modified as a three-layer system, it can be used for thermal shock applications. The coating is able to resist heat because it absorbs the radiant energy and releases it back out from the surface it is applied to. There is a metallic base coat, a ceramic intermediate layer, and a ceramic layer coating on top. Missile steering vanes benefit from these coatings.

  • Surface seals: Cermanic coatings are used in the food manufacturing and the pharmaceutical industries to provide surface seals to product packaging.

  • High speed and high velocity: Because high temp ceramic coatings can withstand high temperatures, they can also provide more effective performance in high speed and high-velocity situations. Land-based aerospace turbine components used it for that reason.

  • Bearing contamination reduction: Ceramic coatings have great wear and tear resistance, meaning they work very effectively with rubber, metal, and polymer to reduce the risk of contamination in production.

  • Critical seals: Ceramic coatings are used for critical seals in high-speed, heavy-duty industrial applications like steel production and power generation equipment.

  • Leak minimization: Nearly all processing environments can benefit from the leak minimization provided by high temp ceramic coatings. During the manufacturing process, the possibility for leaks in packaging or machinery is always there, and ceramic coatings help reduce that.

Ceramic is incredibly heat resistant, and it can withstand temperatures of 2,000 degrees Celsius, or 3,800 degrees Fahrenheit. ITC ceramic coatings can withstand up to 5,000 degrees Fahrenheit. This is why it's called high temp ceramic coating. They can be used in a variety of situations for many different applications. They can be used to seal leaks, provide corrosion protection, and anything in between. If you want to take advantage of the many benefits and applications of high temp ceramic coatings, check out our inventory today!

5 Benefits of Cooking with Ceramic Coated Cookware

When you're looking for new cookware, it can be hard to decide what products to buy. You can choose stainless steel or a variety of nonstick options. If you decide to go with nonstick, you should choose cookware with ceramic coating, and here's why.

4 Tips to Prevent Hazardous Situations When Using a Kiln

Operating a kiln can be fun and exciting, but they are potentially very dangerous if not used properly. Here are some tips you should follow if you plan to own and/or operate a kiln so you can prevent potentially dangerous situations. 

Top 4 Benefits of High Temp Ceramic Coating for Your Car's Exhaust System

High temp ceramic coating is a type of coating that can resist very high temperatures. In fact, ceramic can withstand temperatures of 3,800 degrees Fahrenheit (2,000 Celcius). ITC 100 ceramic coating can withstand up to 5,000 degrees Fahrenheit. Here are some reasons you need these types of high temp coatings for your car's exhaust system. 

4 Equipment Items Every Potter Needs

itc 100 ceramic coating

In order for potters to be able to indulge in their creative process, there are some pieces of equipment they need. In the pottery process, potters use their equipment to bring dry clay to a useable form. Here are some main pieces of equipment that potters simply cannot live without. 


Kilns are used for the firing process, which is arguably the most essential part of pottery. A kiln is a container in which heat builds up to temperatures required to fire ceramics. It is usually used to turn clay into a ceramic material. Kiln elements can typically last up to 100 firings. After that, you will probably need kiln repair services. 

ITC 100 Ceramic Coating

ITC 100 ceramic coating provides innovative high temp ceramic coating for the piece that will be going into the kiln. It acts as ceramic insulation as it reflects and retains heat in order to protect the clay and your kiln. ITC 100 ceramic coating is rated for temperatures up to 5,000 degrees Fahrenheit, so it can certainly hold up in a kiln. 

Potter's Wheels

When most people think of pottery, a potter's wheel will come to mind. There are various styles of potter's wheels that have been used in different cultures through the years. Human-powered wheels are ones that use a heavy flywheel attached to a wheelhead. By using hand or leg power, the wheelhead moves as the potter centers or throws the clay, eventually forming the final piece.

Clay Processors

Clay processors prepare the clay for use. For the most part, clay processors are only used by potters who do large amounts of work. Most commercially available clays have already been mixed and pugged. Three main pieces of equipment go into clay processing, including clay mixers, pugmills, and pugger-mixers. Clay mixers mix clay body ingredients and are used to recycle clay scraps. Pug mills homogenize clay that has already been mixed. Pugg-mixers do both.

If you want to start doing pottery as a hobby or a profession, you'll need these types of equipment. They will allow you to create unique and elegant pottery made from your own hands. 

Kiln Application Results: Gas consumption reduced by more than 30%

ITC Coatings Performance Results: NC State University Crafts Center

“As a full time maker and ceramic studio manager, it would be a huge mistake for me to not recommend ITC Coatings to anyone working with high temp heat. These products are the safety net we look for, the coat of armor that our equipment deserves, and the next step in saving time and money. Seeing is believing, and with that I highly advocate investing in these energy saving products which can benefit not just your own but everyone’s future as well! Don’t believe me? Let’s talk!”

— Jennifer Siegel Clay Studio Manager, NC State University Crafts Center

ITC Coatings 100HT and 296A were applied to the linings of a couple of the kilns at the NC State University Crafts center. By all accounts the coatings provided some excellent results.

Below are the facts and findings of the application at NC State.

Inside coated raku kiln.JPG
Cone 10 Reduction Kiln.JPG


Facts about the installations:

Cone 10 Gas Reduction Car Kiln, K26 IFB construction with sprung arch, 50 cubic ft

  • Coated with 100HT

  • Outside surface temp reduced by 30+ dF

  • Firing time reduced by 1 hour (28 hour firing

Barrel Raku kiln, 2.5 inch ceramic fiber lining

  • Coated with ITC 296A

  • Outside surface temperature reduced by 50+ degrees F

  • Firing time reduced by HALF

  • Gas consumption reduced by greater than 1/3

Summarizing thoughts from Jennifer Siegel, Clay Studio Manager, NC State Univ. Crafts Center:

  • ITC Coatings are ideal products for anyone working with open flame, contained high-temp heat, or long-term firing equipment.

  • Safety and power efficiency are clearly among the primary benefits of ITC Coatings, as these protective coatings are meant to increase work environment safety, prolong equipment life, and reduce energy costs and environmental impact.

  • On average, brick replacement occurs about every 5-10 years, depending on how hot and how often you're firing. What if that time frame could be doubled? Think about how much money you can save with an affordable, easy to use product like 100HT. Granted there are plenty of kilns out there operating just fine, full of spalled bricks... But how efficient are those firings? 100HT greatly increases the efficiency of firebrick by reflecting heat back into the kiln before it soaks into the brick.

  • Ceramic fiber is nasty stuff - you can't touch it - it deteriorates faster than kiln brick, and it is very easy to damage. ITC 296A can eliminate almost all of those issues. This is the literal 'coat of armor' we've mentioned. An application of 296A on the surface of ceramic fiber creates a powerful shell, one that seals in the loose, itchy fiber and increases its power exponentially.

  • For crank arm/hydraulic lift raku kilns, these coatings add little weight to the load.

  • Before coating my raku kiln with ITC 296A I couldn't touch the outer surface of the kiln. Now I can lightly tap the surface during the peak of firing without worry. This greatly reduced my stress while teaching, you never know if/when a beginner student is going to get a little too close or forget about the hot surfaces! Safety is super important and ITC has improved it greatly!

  • Prolong the life of your kiln brick 100HT!

Application: Arcelor Mittal Harriman Steel, Pusher Reheat Furnace


The amazing benefits of ITC Coatings are seen perhaps nowhere greater than when they are used in the relining of an industrial furnace or kiln. This case study includes the issues, methods and results of a very successful reheat furnace reline we performed for a major steel producer, helping them to reach their full production potential.


furnace reline crew




• Furnace: The furnace is rated at 75 tons/hr. and utilizes Bloom high temperature burners
designed for 7500F combustion air with and utilizing a recuperator. The maximum Btu input is
89.9 MM Btu or 1.2 MM Btu/ton. The furnace controls are minimal with the system utilizing an
air lead only instead of a more precise lead lag system, and the exhaust utilizes a forced
evacuation fan with manually adjustable damper blades.

• Lining Configuration: Most of the existing refractory was in reasonably good shape except for
the billet charge, discharge peel bar and billet discharge openings, which were badly damaged.
The soak zone burner wall was also badly damaged.

• Customer Need: ITC recommended a solution to address several major challenges:

- Excessive heat loss and shell temperatures on the roof and sidewalls.
- High fuel consumption
- Continual refractory maintenance with charge and discharge openings


• Engineered Approach: ITC recommended a hot face veneer to address the customers’
requirements. The veneer design included:

- 1” thick 12”x12” ceramic fiber squares (2300 F temperature use limit)
- A proprietary, high-reflectivity hot face coating

• High Reflectivity Coatings: ITC manufactures a proprietary, high reflectivity coating (ITC 100HT) to work in concert with the furnace conditions and veneer design. Under ideal conditions, high reflectivity coatings absorb energy from the process and re-radiate it to the furnace load, imparting the following benefits:

- Lower heat loss – Minimizes heat transfer through the furnace refractory walls
- Lower Maintenance costs – Protects the substrate refractory
- Improved furnace operation – Improves the thermal efficiency of the process
- Reduction in scale generation – Less Fe2O3 available due to more efficient burning
- Increased throughput – Additional energy (Btu’s) available to heat product at an increased rate

The combination of veneer and the coating significantly lowered shell temperatures

Due to the thermal efficiencies, Btu/gas savings was reduced by 20%

The thermal efficiencies of the new design enabled the operators to drop normal furnace
operating temperatures (as indicated by thermocouples) from 2150 F to 1840 F.

By reflecting the energy back to the colder steel load in the furnace, the furnace throughput
increased from 65 tons to the rated 75 tons per hour.

Decreased operating temperatures and increased throughput have allowed an increase in yield
of approximately 2 ½ % due to a significant decrease in scale generation. At full production this
amounts to 6,150 additional tons of saleable product per year.

Combining all efficiencies, the amount of energy required dropped from 1.2 MM Btu/ton to 0.96 MM Btu/ton. If the flue exhaust is restricted as is recommended and the burner control system updated, this furnace could attain 0.88 MM Btu/ton or a reduction in fuel usage of 33%



• FUEL SAVINGS = $833,000 per year (at $8.00 per MM Btu)
Previous: (65 tons/hr.)(1.2 MM Btu/ton) = 1,872 MM Btu/day
New: (75 tons)(.8 MM Btu/ton) = 1,440 MM Btu/day

• INCREASED PRODUCTION = $2,929,500 per year
= (6,510 additional tons/year)($450 ton)

• ROI = 1.33 weeks (at full production of 6,000 hours/yr. or 15 turns/wk.)

TOTAL IMPACT/YEAR = $3,762,500

Corrosion & Prevention In Cement Plant Baghouses


Greg Odenthal, Director of Engineering & Technical Operations, ITC - International Technical Ceramics, LLC and Steve Williams, COO of JC Industrial Services, summarize baghouse corrosion and provide a solution for its elimination.


Corrosion causes plant shutdowns, waste of valuable resources, loss or contamination of product, reduction in efficiency, costly maintenance, expensive over design and also can jeopardize safety. In general, corrosion in cement plants occurs when process gases containing moisture, SOx, HOI, and NOx, operate at dew point temperatures. The economic Impact of corrosion damage has become a significant problem in cement plants worldwide. The best time to stop corrosion is before it begins and ITC - International Technical Ceramics, LLC has developed several ceramic thermal barrier coatings that have all but eliminated baghouse corrosion due to condensing flue gases.


Carbon steel and even stainless steel corrodes in flue gas service. Equipment like electrostatic precipitators, baghouses,
cooling ducts, conditioning towers and stacks frequently fall due to corrosion. Corrosion is worse when there is presence
of acidic compounds in the flue gas. Figure 1 shows severe corrosion on the Inside of a baghouse lined with conventional epoxy based coatings.

The source can be from sulfur content in the feed or fuel, chloride content in the feed or air and C02 and NOx from combustion. The moisture content in the gas stream produces hot acid condensation on the steel shell walls, and in most cases, intermittent for short periods of time however the cumulative impact can be up to 1.0 mm/yr. of metal loss equating to less than five (5) years life. This loss of metal thickness can be seen as thick rust flakes and also pinholes caused by localized attack. Atmospheric air entering the system through these pinholes gives rise to an increase in energy consumption during operation of the baghouse. Air pollution control devices, the fans and stack are also candidates for corrosion. Water spray towers used to control temperatures, amplify the problem. Some processes have acid gas scrubbers, which are also problematic if they are not protected. In these systems, the stack is also a problem area. In general, equipment operating in the cooler end of the process is where most of the corrosion develops. These areas are sensitive to cold air in leakage, low external temperatures and startups and shutdowns.

The corrosion of pollution control devices in cement plants is most severe during the acidic condensation of the process gases containing moisture, S03, S02, C02, HCI and NOx. The condensation can be more frequent and more aggressive depending on several variables such as moisture concentration, inlet gas temperature, defects in the thermal Insulation, leaks of cold air into the baghouse and low ambient temperature. When there Is a large fluctuation In the gas temperature entering the baghouse, an additional complication occurs; at lower temperatures there Is severe corrosion due to condensing flue gases, at higher temperatures there can be thermal degradation of the corrosion protection (conventional) coating.


Many coatings have been developed in the past. Epoxy and silicone coating materials can resist the effects of acid condensation to some degree. Acrylics, alkyds, or polyesters will not withstand high operating temperatures. The failure mode for these types of coatings are oxidative degradation and delamination, see figure 2. Oxidation damage occurs when the process equipment operates above 150° C (302° F). Undercut corrosion, dis-bonding and delamination occur when there is any surface damage or imperfection in the surface preparation. There are high temperature silicone coatings that can operate up to 500° C (932° F) in dry environments, but in hot combustion gas systems with even a small percentage of moisture content, they tend to fail in a few months.


Today high temperature, energy efficient ceramic coatings are being used to eliminate baghouse corrosion along with the high cost of maintenance associated with this problem. ITC - International Technical Ceramics, LLC has engineered and developed several different ceramic coatings that are successfully being used to prevent baghouse corrosion. These cement coatings have no VOCs and are water based, spray applied products with excellent adhesion and the ability to handle high temperature, moist and acidic environments without de-bonding see figure 3.

Instead of applying a barrier that slows the heat conduction through insulation and substrate, ITC coatings use reflective, low transmittance technology to improve insulating values and prevent the formation of a dew point thus eliminating condensing flue gases and acid attack. Substrate surface preparation is critical to the success of ITC coatings and must be abrasively blasted to remove chemical debris and contaminants from the shell, which are the catalysts for the onset of corrosion. Application thicknesses for ITC coatings are only mills thick compared to 100+ mills of conventional epoxy-based coatings. ITC and its alliance partner JC Industrial Services to date, have several successful installations, each with two (2) to three (3) years of service life without any metal loss or coating maintenance required. The major benefits attained through the use of ITC protective coatings are:

  • Baghouse longevity due to the elimination of metal loss
  • Reduction in downtime
  • Increase in efficiency due to elimination of condensing flue gases leads to reductions in bag and cartridge corrosion allowing for longer campaigns.


Despite the developments in corrosion resistant alloys over the past few decades, carbon and stainless steels continue to rust and corrode in harsh acidic environments. The need for corrosion prevention is greater today than ever before due to the new more stringent pollution and emission regulations imposed by the EPA. Without the use of coatings, surface substrates will continue to corrode leading to premature equipment failure costing hundreds of thousands of dollars per year in steel replacement, maintenance, unscheduled downtime and possible fines. ITC’s line of ceramic protective coating provides a cost-effective path toward corrosion elimination through the use of thermal barrier cement coating that extends the service life of cement plant equipment.




1. "The Benefits of Internal Coatings" Debra Ashley - Specialized Coating Technology, LLC

2. "Solutions For Severe Corrosion" Linas Mazelka - 3L&T Inc. USA